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a b s t r a c t

A numerical study on a non-linear hyperbolic diffusion equation is proposed. The Hartree hybrid method
combining finite difference techniques with the method of characteristics is used in the presence of dis-
continuities between initial and boundary conditions. The technique proved to be an useful tool to over-
come oscillation problems and spurious solutions in case of strong non-linearities related to both
attractive or repulsive interactions between diffusing species. Two different expressions for the diffusion
coefficient are used in order to compare our results with the ones obtained in previous studies relying
upon the Laplace transform technique and the MacCormack predictor–corrector method. Finally, an ana-
lytic approach based on the singular surface theory is proposed to motivate the numerical results and to
clarify some controversial aspects concerning the penetration depth of a diffusive front in the presence of
interactions.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

It is widely recognized that the hyperbolic heat and mass trans-
fer equations offer a promising tool to solve many physics and
engineering problems when the classical Fourier or Fick approach
are proven to be unsuccessful [1,2]. Among the most important
applications, we remember the nano-fluid heat transport [3], the
high-energy laser pulse technology [4], the chromatography [5],
the single-molecule fluorescence spectroscopy [6] and the food
engineering [7].

Heat and mass diffusion problems in time-delayed hyperbolic
equations are generally cast into the following form [8,9]:

c
ouð~r; tÞ

ot
þr �~qð~r; tÞ ¼ 0 ð1Þ

~qð~r; t þ sÞ ¼ �kðuÞruð~r; tÞ ð2Þ

where uð~r; tÞis temperature (c is heat capacity per unit volume) or
concentration (c is unit) in case of heat or mass transfer, k(u) is
the thermal conductivity or mass diffusivity,~r is the position vector,
t is the time and s is a time lag connecting the flux ~q with the gra-
dient of u. Eq. (1) accounts for energy or mass conservation, while
ll rights reserved.

: +39 010 3532586.
everberi), bagnerini@diptem.
), agostino@itim.unige.it (A.G.
Eq. (2) refers to a phenomenological transport law subject to a time
relaxation process. The physical motivation of this approach is basi-
cally due to the need of overcoming the well-known ‘‘conduction
paradox” [10,11], namely the onset of an unbounded propagation
speed of a wave as an effect of a sudden perturbation of u in the
embedding medium.

In one spatial dimension, a first-order Taylor expansion of (2)
transforms the aforementioned system into:

c
ouðx; tÞ

ot
þ oqðx; tÞ

ox
¼ 0 ð3Þ

s
oqðx; tÞ

ot
þ qðx; tÞ ¼ �kðuÞ ouðx; tÞ

ox
ð4Þ

Combining (3) and (4) and eliminating q, we get the non-linear
Maxwell–Cattaneo equation:

ou
ot
þ s

o2u
ot2 ¼

1
c

o

ox
kðuÞ ou

ox

� �
ð5Þ

Eq. (5) with constant k was extensively studied in statistical physics
to model inertial effects in particle walks where there is a prefer-
ence for the walker to continue the prior direction of motion
[12,13]. The Maxwell–Cattaneo equation allows to interpret sys-
tematic deviations from the classical heat diffusion approach in
many experimental cases where s assumes surprisingly high values
as in biological tissues, polymeric and inhomogeneous materials
[14,15]. In particular, the relaxation time for the mass flux is a cru-
cial parameter as it triggers an onset of discontinuities in polymers
structure [16]. Moreover, strong discrepancies between parabolic
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Nomenclature

F1,2 dimensionless characteristic velocity.
G1,2 dimensionless factors in characteristic equations
H1,2 dimensionless factors in characteristic equations
I1 modified Bessel function of the first kind
k thermal conductivity (W/m K) or mass diffusivity (m2/s)
k0 reference thermal conductivity (W/m K) or reference

mass diffusivity (m2/s)
k* dimensionless temperature or concentration h-depen-

dent function
q heat flux (J/m2 s) or mass flux (mol/m2 s)
Q dimensionless heat or mass flux
r space variable vector (m)
R vector of dependent variables in the p-system
t time (s)
T vector of dependent variables in the p-system
u temperature (K) or concentration (mol/m3)
u0 initial temperature (K) or concentration (mol/m3)
u1 wall temperature (K) or concentration (mol/m3)
U wave speed (m/s)
w local dimensionless wave speed
w0 reference wave speed
x space variable (m)

Greek symbols
b dimensionless parameter modelling the h-dependence

in k*(h)
c heat capacity per unit volume (J/m3 K) or unit in mass

transport
g dimensionless space variable
h dimensionless temperature or concentration
m vector of dependent variables in the p-system
n dimensionless time
s relaxation time (s)
X heaviside unit step function

Subscripts
r rightward
l leftward

Superscripts
+ value of a generic variable at the front wave
� value of a generic variable behind the front wave
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and hyperbolic heat and mass transfer models were observed dur-
ing drying processes of thin layers at high energy surface flux
[17,18].

From a computational point of view, common efforts are direc-
ted to overcome convergence and stability problems in the neigh-
bourhood of the travelling discontinuities [19]. To this purpose,
several finite difference techniques rely upon the use of the Mac-
Cormack predictor–corrector scheme both in linear and non-linear
diffusion models [20,21]. High resolution schemes combine high-
order discretizations and oscillation-free techniques, as in the to-
tal-variation diminishing flux-limited methods (TVD), where a
feedback mechanism extracts information from the approximate
solution and uses this information to ascertain where in the solu-
tion domain the accuracy can be improved [22]. In this context,
very promising results have been obtained using Van Leer’s mono-
tone upstream scheme for conservation laws (MUSCL) [23,24].
However, TVD schemes have a crucial drawback in that they
degenerate to a lower order at the extrema of the solution [25].
Compact finite differences [26] are reminiscent of spectral meth-
ods, where the approximation to a derivative at one grid point in-
volves all the nodal values. However, the presence of
discontinuities between initial and boundary conditions produces
spurious numerical results in spectral methods provided a proper
regularizing technique is adopted. These oscillations, the Gibbs
phenomena, may not even decay in magnitude by mesh refining
in non-linear problems. The same drawback is suffered by the most
recent non-standard finite difference (NSFD) techniques [27].

In this work, we use the Hartree hybrid method to numerically
solve Eq. (3) where k(u) depends on a parameter accounting for
interactions between diffusing species [28] or modelling different
responses of substrate to thermal transport in case of mass or heat
transfer, respectively. This choice is also motivated by the need of
clarifying some controversial aspects of diffusion in case of attrac-
tive interactions [29], namely when dk/du < 0. The paper is divided
as follows. In Section 2, we outline the essentials of the numerical
method here adopted. In Section 3, we discuss the results and we
compare the solution with the ones presented in previous studies.
In Section 4, we motivate our numerical results using an analytical
approach based on the singular or discontinuity surface theory
[30]. Finally, in Section 5 we draw the conclusions.
2. Model and algorithm

It is convenient, in order to compare our results with the ones
presented in other works [21,29,31], to write the system of Eqs.
(3) and (4) in a dimensionless form. We assume that:

uð1; tÞ ¼ u0; uð0; tÞ ¼ u1

g ¼ x

2ðsk0=cÞ1=2 ; n ¼ t
2s

; Q ¼ q

ðu1 � u0Þðck0=sÞ1=2 ; h ¼ u� u0

u1 � u0

ð6Þ

The thermal conductivity or mass diffusivity is expressed as:

kðuÞ ¼ k0k�ðuÞ ð7Þ

where k0 is a reference value of k and k*(u) is an arbitrary function of
u which, in terms of h, will be chosen in the following according to a
specific expression of linear or non-linear h-dependence, that is
k*(h) = 1 + bh or k*(h) = ebh. It should be noted that, in case of linear
approximation, b < 0 for many substances [32].

Whatever the expression of k*(b, h), the condition

k�ðb ¼ 0; hÞ ¼ 1 ð8Þ

must be fulfilled to ensure that, in the absence of interactions, k
tends to the reference value k0 typical of the linear case.

From (3), (4), (6) and (7), we get:

oh
on
þ oQ

og
¼ 0

oQ
on
þ k�ðhÞ oh

og
þ 2Q ¼ 0

ð9Þ

If we consider a diffusion process in a semi-infinite medium with a
sudden change in the wall temperature or concentration, the initial
and boundary conditions for all the present simulations are taken
as:

hðg;0Þ ¼ 0 g > 0
Qðg;0Þ ¼ 0 g > 0
hð0; nÞ ¼ 1

ð10Þ
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We recall now briefly some features of the Hartree hybrid method
here adopted, which uses a combination of finite differences with
the method of characteristics [33].

From (9), we derive the expressions of the two families of char-
acteristic curves F1(h) and F2(h), namely:

og
on

����
1
¼ F1ðhÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
k�ðhÞ

q
;

og
on

����
2
¼ F2ðhÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
k�ðhÞ

q
ð11Þ

Along the characteristics, the solution of system (9) must satisfy the
following conditions:

dQ þ G1 dhþ H1 dn ¼ 0
dQ þ G2 dhþ H2 dn ¼ 0

ð12Þ

where

G1;2 ¼ F1;2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
k�ðhÞ

q
; H1;2 ¼ 2Q ð13Þ

From a Taylor expansion of Eq. (9) and assuming that points P and S
belong to the characteristic curves F1 and F2 respectively, we can
write:

gD � gP ¼
1
2

F1ðDÞ þ F1ðPÞ½ �Dn

gD � gS ¼
1
2

F2ðDÞ þ F2ðSÞ½ �Dn

Q D � QP þ
1
2

G1ðDÞ þ G1ðPÞ½ �ðhD � hPÞ þ
1
2

H1ðDÞ þ H1ðPÞ½ �Dn ¼ 0

Q D � QS þ
1
2

G2ðDÞ þ G2ðSÞ½ �ðhD � hSÞ þ
1
2

H2ðDÞ þ H2ðSÞ½ �Dn ¼ 0

ð14Þ

In Fig. 1, a point A with coordinates (iDg, jDn) belongs to a line
where the solution is supposed to be determined. The solution at
the point D on the line corresponding to the following time step
(j + 1)Dn can be found by iterative solution of the previous system
in the unknowns gP, gS, hD, QD. The values of hP, hS, QP, QS are guessed
at the beginning of the iterative cycle and are sequentially updated
by interpolation once the g-coordinate of the points P and S are
determined. Many interpolation strategies can be adopted; among
them, the upwind–downwind schemes proved to be the most reli-
able trade-off between accuracy and stability. On the opposite, the
Lagrange schemes do not allow to avoid the onset of spurious oscil-
lations. In its essence, the method requires the solution of a non-lin-
ear algebraic system with four unknowns at each grid point. This
scheme has a second-order truncation error and it is more accurate,
though more time consuming, than the simpler Courant–Isaacson–
Rees discretization technique [33].
F1 F2

B A

E
(j+1)Δξ

CS

D

P

F

jΔξ

(i-1)Δη η

ξ

iΔη (i+1)Δη

Fig. 1. Scheme of the discretization technique adopted by the Hartree hybrid
method.
3. Results and discussion

In Fig. 2, we have tested the previously described method in
case of constant diffusivity k*. In this case, the analytical solution
of (9) with boundary an initial conditions (10) and k*(h) = 1 + bh
with b = 0 is the following [34,35]:

hðg; nÞ ¼ Xðn� gÞ e�g þ g
Z n

g
e�z I1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � g2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � g2
p dz

" #
ð15Þ

where X(n � g) is the Heaviside unit step function and I1 is the mod-
ified Bessel function of the first kind. The dashed line corresponds to
the solution calculated according to (15), while the solid one has
been numerically obtained by the Hartree hybrid method. A satis-
factory agreement is obtained for different values of the dimension-
less time despite the absence of regularizing or damping criteria
aiming at smoothing the oscillations in the vicinity of the wave
front.

In Figs. 3 and 4, we have reported the solution h versus the
space variable with k*(h) = 1 + bh for a single fixed value of b < 0
and b > 0, respectively. Firstly, we observe that the advancing part
of the travelling wave for b < 0 seems to behave as in the linear
case. Besides, the front slope is a decreasing function of time and
it has a trend consistent with the one of a discontinuity wave. By
the way, Glass et al. [21] considered an analogous situation for
weaker attractive interactions (b = �0.25) and concluded that the
local speed of the leading portion was not significantly different
from that of the b = 0 wave. The case for b > 0, as visualized in
Fig. 4, is characterized by the presence of a steep profile, highly
suggestive of a shock wave, keeping its verticality for all times
and moving with a higher speed with respect to the linear case.

Heuristically, the onset of a discontinuity wave or a genuine
shock wave for attractive (dk*/dh < 0) or repulsive (dk*/dh > 0)
interactions can be visualized in Fig. 5. For dk*/dh < 0, the profile
close to the point A tends to diffuse with a lower speed than the
one located at the point B, namely: hA > hB ? kA

* < kB
* ? wA < wB,

where w ¼ w0

ffiffiffiffiffiffiffiffiffiffiffi
k�ðhÞ

p
is the local wave speed [21]. An opposite sit-

uation occurs for dk*/dh > 0, where the same starting configuration
evolves producing a vertical profile between A and B with the onset
of a shock wave. In the following paragraph, we will explain with a
more rigorous discussion that, for dk*/dh < 0, we cannot have a
shock wave but only a discontinuity wave travelling at a speed
independent of the tuning parameter b.

In Fig. 6, we report some profiles of h versus g at constant n for
several values of b < 0. It can be seen that the penetration distance
of the wave front does not vary for different values of b, including
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Fig. 2. Solid line: Plot of the solution h versus the space variable g at three different
times n for b = 0. Dashed line: plot of the analytic solution obtained by Eq. (15).
Dn = 2.5 � 10�4; Dg = 1. � 10�4.
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Fig. 3. Plot of the solution h versus the space variable g at different times n = 0.25;
0.5; 0.75; 1.0; 1.25 for k*(h) = 1 + bh and b = �0.5. Dn and Dg as in Fig. 2.
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Fig. 4. Plot of the solution h versus the space variable g at different times n = 0.25;
0.5; 0.75; 1.0; 1.25 for k*(h) = 1 + bh and b = 0.5. Dn and Dg as in Fig. 2.
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Fig. 5. Sketch of two different situations for an initial profile evolution in case of
dk*/dh < 0 (panel (a)) and dk*/dh > 0 (panel (b)). In panel (a), the angle p tends to
increase at the following time step, while in panel (b) the line joining the points A
and B evolves towards a vertical configuration typical of a shock wave.
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Fig. 6. Plot of the solution h versus the space variable g at fixed time. From left to
right, b = �1; �0.75; �0.5; �0.25. Dn and Dg as in Fig. 2.
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Fig. 7. Plot of the solution h versus the space variable g at fixed time. From left to
right, b = 1; 2; 3. Dn and Dg as in Fig. 2.
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Fig. 8. Plot of the solution h versus the space variable g at fixed time for k*(h) = ebh.
From left to right, b = �1.5; �1; �0.5; 0.5; 1; 1.5. Dn and Dg as in Fig. 2.
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b = �0.25. As previously stated, this result is consistent with Glass
et al. study [21], but it is in contrast with the more recent observa-
tions of Liu [29]. Liu investigated a case of thermal diffusion gov-
erned by the same equations here adopted and criticized the
previous papers of Glass et al. and of Chen and Lin [31] explicitly
claiming that the penetration distance of a thermal wave for
b = �0.25 at fixed n = 1 should be different from that of b = 0.

As in Fig. 6, the plots of Fig. 7 are realized at constant time for
several values of b > 0. The distance travelled by the advancing
front is now clearly an increasing function of b. As generally
pointed out in analogous studies, the cases for b > 0 are highly cru-
cial for many numerical methods owing to the appearance of
numerical instabilities and oscillations in the vicinity of the mov-
ing front. It should be noted that this method is not affected by
the aforementioned spurious results even for high values of b.

Besides, to further motivate our last observations, we have also
plotted the solution of system (9) subject to (10) in Fig. 8 using an
exponential expression k*(h) = ebh that Liu proposed in order to test
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the reliability of his method in case of strong non-linearities. No
numerical oscillation is produced by the present method for all
choices of b and, in particular, for those values of b giving slightly
spurious results with the Laplace transform method of Liu [29].

Finally, in Fig. 9 we show the independence of our results with
respect to the discretization. The data collapse onto a single curve
for decreasing values of Dg.

4. An analytical approach to the problem

We transform system (9) into the following form to better visu-
alize its belonging to the class of the inhomogeneous p-systems
[36]:

ov
on
þ o

og
RðvÞ ¼ TðvÞ; v ¼

h

Q

� �
; R ¼

QR h
0 k�ðzÞdz

� �
; T ¼

0
�2Q

� �
ð16Þ

Eq. (11) gives the characteristic velocities related to Eq. (16). In the
following, we will consider only the expression F1 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k�ðhÞ

p
, as we

treat rightwards moving waves. The Lax entropy conditions to be
fulfilled in order to have a shock [36] travelling with velocity U are:

F1ðhrÞ < U < F1ðhlÞ ð17Þ

where the subscripts ‘‘r” and ‘‘l” stay for ‘‘rightward” and ‘‘leftward”
respectively. Remembering that the wave moves towards the
unperturbed zone where hr = 0 < hl and considering a general func-
tion k*(b, h), we notice that the aforementioned inequality cannot be
fulfilled when ok�

oh < 0.
Besides, taking into account that, in a p-system with a linear

inhomogeneous term T, only genuine shocks or discontinuity
(acceleration) waves are allowed [37], we deduce that only discon-
tinuity waves may exist for k*(h) = 1 + bh or k*(h) = ebh when b < 0.
These waves are also known as ‘‘temperature-rate waves” in case
of heat transfer [38].

To quantitatively motivate the previous numerical results for
b < 0, we will recall briefly here some features of the singular sur-
face analysis, a technique successfully used by Jordan et al. in deal-
ing with travelling perturbations in hyperbolic systems [39,40].

We will let F+ and F� denote the values of a generic variable, F,
ahead of and behind, respectively, the wavefront R(n), which is
advancing in the positive g-direction. The amplitude [F] of the
jump in the function F(n, g) across the wave is:

½F� ¼ ½F�� � ½Fþ� ð18Þ

According to Hadamard’s lemma [39], where the subscript k in Fk

refers to the derivative of F with respect to k, we have:
d½F�
dn
¼ ½Fn� þ U½Fg� ð19Þ

In a discontinuity wave, h and Q are continuous functions across R
while hn, hg, Qn and Qg are not. Therefore,

½h� ¼ 0 8n! d½h�
dn
¼ 0 ð20Þ

½Q � ¼ 0 8n! d½Q �
dn
¼ 0 ð21Þ

Combining Eqs. (19)–(21) we obtain:

½hn� þ U½hg� ¼ 0 ð22Þ
½Q n� þ U½Q g� ¼ 0 ð23Þ

Applying the operator [ ] to both sides of equations in system (9),
we get:

½hn� þ ½Q g� ¼ 0 ð24Þ
½Q n� þ ½k

�ðhÞhg� þ 2½Q � ¼ 0 ð25Þ

The jump of a product is now developed according to the Lindsay
and Straughan jump rule [41], namely:

½k�ðhÞhg� ¼ k�ðhÞjþ½hg� þ hþg ½k
�ðhÞ� þ ½k�ðhÞ�½hg� ð26Þ

Remembering that k*(h)j+ = k*(hr) = 1 and [k*(h)] = 0 for k*(h) = 1 + bh
or k*(h) = ebh, we can write Eq. (25) in final form:

½Q n� þ ½hg� ¼ 0 ð27Þ

The system of Eqs. (22)–(24) and (27), here better represented in
matrix notation

1 U 0 0
0 0 1 U

1 0 0 1
0 1 1 0

0
BBB@

1
CCCA

½hn�
½hg�
½Q n�
½Q g�

0
BBB@

1
CCCA ¼

0
0
0
0

0
BBB@

1
CCCA ð28Þ

gives a solution provided the matrix of coefficients has det = 0,
whence U = ± 1. Only the value U = 1 will be considered here, as
we have R(n) travelling in the positive g-direction.

Thus, we conclude that the discontinuity wave has a penetra-
tion depth independent of b, for b < 0, for all choices of k*(b, h)
investigated by Liu [29]. This result motivates both our numerical
results of Figs. 3, 6 and 8 and the ones of Glass et al. [21] and Chen
and Lin [31], while it disagrees from Liu’s criticism.

We tried to apply the same approach to the case b > 0 in order
to describe the shock waves, but our attempts were unfruitful. In
fact, to the best of our knowledge, the singular surface analysis
method does not allow one to obtain an ODE describing a genuine
shock amplitude evolution in case of a non-linear hyperbolic sys-
tem [42].
5. Conclusions

In this paper, we have presented a numerical solution of a
hyperbolic non-linear telegrapher-type equation accounting for
heat or mass diffusion when the diffusivity depends on tempera-
ture or concentration, respectively.

The most important results can be summarized in the following
points:

– The Hartree hybrid method proved to be a satisfactory trade-off
between computational simplicity and reliability of results. In
fact, no numerical oscillations were found despite the absence
of regularizing criteria, the presence of a discontinuity between
initial and boundary conditions and in a wide range of the
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parameter b tuning the expression of diffusivity. For these rea-
sons, we could analyze stronger non-linearities with respect to
the ones considered in previous works.
– From a methodological point of view, the paper gives a contribu-
tion to the discussion concerning the dynamics of a diffusion
front in hyperbolic partial differential equations when the diffu-
sivity is a decreasing function of the dependent variable. This
case has been object of previous numerical investigations but
the conclusions were, up to now, controversial. In this context,
the singular surface theory allows to give some answers that
the numerical methods cannot supply.
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